| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 |
- # -*- coding:utf-8 -*-
- import math
- import os
- import re
- import shutil
- import threading
- import time
- from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor
- import jieba
- import redis
- from bitarray import bitarray
- from tqdm import tqdm
- import utils
- import logging
- from constant import FILE_LONG_TAIL_MERGE
- # 文件:长尾词_合并_分词.txt
- FILE_LONG_TAIL_MERGE_SPLIT = "长尾词_合并_分词.txt"
- # 文件:长尾词_合并_聚合.txt
- FILE_LONG_TAIL_MERGE_AGG = "长尾词_合并_聚合.txt"
- # 文件夹:历史聚合数据归档文件夹
- DIR_AGG_FILE_ARCHIVE = "长尾词_聚合_归档_%s"
- # 文件:长尾词_合并_分词倒排索引.txt
- FILE_LONG_TAIL_MERGE_REVERSE_INDEX = "长尾词_合并_倒排索引.txt"
- # 子文件:长尾词_合并_聚合_%s.txt
- FILE_LONG_TAIL_MERGE_AGG_PID = "长尾词_合并_聚合_%s_%s.txt"
- # 缓存前缀:分词词根
- CACHE_WORD_STEM = "word:stem"
- # 缓存前缀:倒排索引
- CACHE_WORD_REVERSE_INDEX = "word:reverse_index"
- # 缓存:长尾词缓存
- CACHE_WORD = "word"
- # 缓存:聚合位图
- CACHE_UNUSED_BITMAP = "unused_bitmap"
- # 字符集:UTF-8
- CHARSET_UTF_8 = "UTF-8"
- # redis缓存池
- redis_pool: redis.ConnectionPool = None
- # 线程池
- thread_pool: ThreadPoolExecutor = None
- # 线程本地变量
- local_var = threading.local()
- def agg_word(file_path: str):
- """
- 长尾词聚合
- :param file_path:
- :return:
- """
- # 总长尾词数量
- # word_total_num = 0
- word_total_num = 1000000
- # 聚合阈值
- agg_threshold = 0.8
- # 每份任务计算量
- task_cal_num = 10000
- # 工作现成(减1是为了留一个处理器给redis)
- worker_num = os.cpu_count() - 1
- # worker_num = 1
- # 正则表达式:聚合文件分文件
- agg_file_pattern = re.compile(r"长尾词_合并_聚合_\d+_\d+.txt", re.I)
- # 最大线程数
- max_threads = 2
- # redis最大连接数(和工作线程数保持一致,免得浪费)
- redis_max_conns = max_threads
- # redis缓存
- m_redis_cache = redis.StrictRedis(host='127.0.0.1', port=6379)
- # 判断文件是否存在
- for file_name in [FILE_LONG_TAIL_MERGE, FILE_LONG_TAIL_MERGE_SPLIT,
- FILE_LONG_TAIL_MERGE_REVERSE_INDEX]:
- input_file = os.path.join(file_path, file_name)
- if os.path.exists(input_file) and not os.path.isfile(input_file):
- raise Exception("文件不存在!文件路径:" + input_file)
- # 归档历史数据文件
- history_agg_file_list = [file for file in os.listdir(file_path) if agg_file_pattern.match(file)]
- if len(history_agg_file_list) > 0:
- archive_path = os.path.join(file_path, DIR_AGG_FILE_ARCHIVE % time.strftime('%Y%m%d%H%M%S'))
- os.makedirs(archive_path)
- for history_agg_file in history_agg_file_list:
- shutil.move(os.path.join(file_path, history_agg_file), archive_path)
- # 缓存关键词位置
- # word_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE)
- # word_dict = {}
- # with open(word_file, "r", encoding="utf-8") as f:
- # for position, word in enumerate(f, start=1):
- # word = utils.remove_line_break(word)
- # if not word:
- # continue
- # word_dict[position] = word
- # m_redis_cache.hset(CACHE_WORD, mapping=word_dict)
- # # 记录总关键词数
- # word_total_num = len(word_dict)
- # # 释放内存
- # del word_dict
- #
- # # 缓存分词
- # word_split_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE_SPLIT)
- # word_split_dict = {}
- # with open(word_split_file, "r", encoding=CHARSET_UTF_8) as f:
- # for position, word_split_line in enumerate(f, start=1):
- # word_split_line = utils.remove_line_break(word_split_line)
- # if not word_split_line:
- # continue
- # word_split_dict[position] = word_split_line
- # m_redis_cache.hset(CACHE_WORD_STEM, mapping=word_split_dict)
- # # 释放内存
- # del word_split_dict
- #
- # # 缓存倒排索引
- # word_reverse_index_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE_REVERSE_INDEX)
- # word_reverse_index_dict = {}
- # # 分词
- # key_pattern = re.compile(r"([^,]+),\[", re.I)
- # # 索引
- # index_pattern = re.compile(r"\d+", re.I)
- # with open(word_reverse_index_file, "r", encoding="utf-8") as f:
- # for word_split_line in f:
- # key_m = key_pattern.match(word_split_line)
- # key = key_m.group(1)
- # val = index_pattern.findall(word_split_line[word_split_line.index(","):])
- # word_reverse_index_dict[key] = ",".join(val)
- # m_redis_cache.hset(CACHE_WORD_REVERSE_INDEX, mapping=word_reverse_index_dict)
- # # 释放内存
- # del word_reverse_index_dict
- # 先清除,然后重新构建长尾词使用位图
- m_redis_cache.delete(CACHE_UNUSED_BITMAP)
- m_redis_cache.setbit(CACHE_UNUSED_BITMAP, word_total_num + 2, 1)
- # 提交任务 并输出结果
- word_agg_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE_AGG)
- with ProcessPoolExecutor(max_workers=worker_num, initializer=init_process,
- initargs=(redis_max_conns, max_threads, file_path)) as process_pool:
- # 计算任务边界
- task_list = utils.avg_split_task(word_total_num, task_cal_num, 1)
- # 提交任务
- process_futures = []
- for skip_line, pos in enumerate(task_list, start=1):
- skip_line = (skip_line % worker_num) + 1
- p_future = process_pool.submit(agg_word_process, agg_threshold, pos[0], pos[1], word_total_num,
- skip_line)
- process_futures.append(p_future)
- # 显示任务进度
- with tqdm(total=len(process_futures), desc='文本聚合进度', unit='份', unit_scale=True) as pbar:
- for p_future in as_completed(process_futures):
- p_result = p_future.result()
- # 更新发呆进度
- pbar.update(1)
- # 关闭线程
- process_pool.shutdown()
- # 获取子进程结果文件列表,并合并
- with open(word_agg_file, "w", encoding="UTF-8") as fo:
- for file in os.listdir(file_path):
- # 不是处理结果部分跳过
- if not agg_file_pattern.match(file):
- continue
- with open(os.path.join(file_path, file), "r", encoding="UTF-8") as fi:
- for word in fi:
- fo.write(word)
- def prepare_word_split_and_reverse_index(file_path: str):
- """
- 预处理:长尾词分词、建立倒排索引
- :param file_path: 待处理文件夹路径
- :return:
- """
- # 判断文件是否存在
- word_input_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE)
- if os.path.exists(word_input_file) and not os.path.isfile(word_input_file):
- print("文件不存在! " + word_input_file)
- return
- # 总文本数量
- total_line_num = 0
- with open(word_input_file, "r", encoding="utf-8") as fi:
- total_line_num = sum(1 for line in fi)
- if total_line_num == 0:
- print("没有待处理的数据,文本量为0")
- return
- # 分割任务数量
- task_list = utils.avg_split_task(total_line_num, math.ceil(total_line_num / os.cpu_count()))
- # 任务进程处理结果
- p_result_list = []
- # 多进程处理
- with ProcessPoolExecutor(os.cpu_count()) as process_pool:
- # 提交任务
- process_futures = [process_pool.submit(word_split_reverse, word_input_file, task[0], task[1]) for task in
- task_list]
- # 处理返回结果
- for p_future in as_completed(process_futures):
- p_result = p_future.result()
- if p_result:
- p_result_list.append(p_result)
- # 分词结果排序
- p_result_list = sorted(p_result_list, key=lambda v: v[0])
- # 输出分词结果
- split_output_file = os.path.join(file_path, FILE_LONG_TAIL_MERGE_SPLIT)
- with open(split_output_file, "w", encoding="UTF-8") as fo:
- for start_pos, word_arr_list, reverse_index in p_result_list:
- for word_arr in word_arr_list:
- fo.write("%s\n" % ",".join([str(i) for i in word_arr]))
- # 关键词倒排索引
- word_reverse_index_dict = dict()
- # 合并倒排索引
- for start_pos, word_arr, reverse_index_dict in p_result_list:
- for key, value in reverse_index_dict.items():
- reverse_index_arr = word_reverse_index_dict.get(key)
- if reverse_index_arr:
- reverse_index_arr.extend(value)
- else:
- word_reverse_index_dict[key] = value
- # 输出倒排索引
- with open(os.path.join(file_path, FILE_LONG_TAIL_MERGE_REVERSE_INDEX), "w", encoding="UTF-8") as fo:
- for key, value in word_reverse_index_dict.items():
- fo.write("%s,%s\n" % (key, value))
- # 关闭进程池
- process_pool.shutdown()
- def word_split_reverse(input_file: str, start_pos: int, end_pos: int):
- """
- 分词和建立倒排索引
- :param input_file: 待处理的文件
- :param start_pos: 处理的开始位置
- :param end_pos: 处理的结束位置
- :return: (开始位置,分词结果,倒排索引)
- """
- # 加载停用词
- stop_word_dict = utils.load_stop_word()
- # 关键词存放容器
- word_arr_list = []
- # 倒排索引
- word_reverse_index = dict()
- with open(input_file, "r", encoding="utf-8") as fr:
- for i, tmp_word in enumerate(fr):
- # start_pos是行数,而i要从0开始
- if i + 1 < start_pos:
- continue
- # 当前位置
- cur_pos = i + 1
- # 到达任务边界,结束
- if cur_pos == end_pos:
- break
- # 分词
- word_list = jieba.cut_for_search(tmp_word.replace("\n", ""))
- # 分词过滤结果
- word_filter_arr = []
- # 过滤停用词
- for word in word_list:
- if word in stop_word_dict:
- continue
- word_index_arr = word_reverse_index.get(word)
- if word_index_arr:
- word_index_arr.append(cur_pos)
- else:
- word_reverse_index[word] = [cur_pos]
- word_filter_arr.append(word)
- if len(word_filter_arr) == 0:
- word_arr_list.append([])
- else:
- word_arr_list.append(word_filter_arr)
- return start_pos, word_arr_list, word_reverse_index
- def init_process(max_conns: int, max_threads: int, file_path: str):
- """
- 初始化进程
- :param max_conns: redis最大连接数量
- :param max_threads: 线程最大数量
- :param file_path: 输出文件路径
- :return:
- """
- # redis缓存池 初始化
- global redis_pool
- redis_pool = redis.ConnectionPool(host='127.0.0.1', port=6379, max_connections=max_conns)
- global thread_pool
- thread_pool = ThreadPoolExecutor(max_threads, initializer=init_thread, initargs=(file_path,))
- def agg_word_process(agg_threshold: float, start_pos: int, end_pos: int, final_pos: int,
- skip_line: int):
- """
- 长尾词聚合处理
- :param agg_threshold: 聚合阈值
- :param start_pos: 任务处理开始边界(包含)
- :param end_pos: 任务处理结束边界(不包含)
- :param final_pos: 总任务边界
- :param skip_line: 进度条显示位置
- :return:
- """
- # 进度长度
- process_len = 0
- if end_pos == -1:
- process_len = final_pos - start_pos
- else:
- process_len = end_pos - start_pos
- with tqdm(total=process_len, desc='子进程-%s:文本聚合进度' % os.getpid(), unit='份', unit_scale=True,
- position=skip_line) as pbar:
- thread_futures = [thread_pool.submit(agg_word_thread, main_word_position, agg_threshold) for main_word_position
- in
- range(start_pos, end_pos)]
- for t_future in as_completed(thread_futures):
- t_result = t_future.result()
- # 更新发呆进度
- pbar.update(1)
- return
- def init_thread(file_path: str):
- """
- 聚合线程初始化
- :param file_path: 输出文件路径
- :return:
- """
- # 初始化redis客户端
- local_var.redis_cache = redis.StrictRedis(connection_pool=redis_pool)
- # 初始化redis管道
- local_var.redis_pipeline = local_var.redis_cache.pipeline(transaction=False)
- # 生成临时结果文件
- word_agg_file = os.path.join(file_path,
- FILE_LONG_TAIL_MERGE_AGG_PID % (os.getpid(), threading.current_thread().ident))
- local_var.file_writer = open(word_agg_file, "w", encoding=CHARSET_UTF_8)
- # 已使用位图副本
- local_var.unused_bitmap = bitarray()
- # 从倒排索引中获取候选词的位置索引
- local_var.candidate_position_set = set()
- # 结果列表
- local_var.result_list = []
- def agg_word_thread(main_word_position: int, agg_threshold: float):
- try:
- # 获取已使用位图副本
- local_var.unused_bitmap.frombytes(local_var.redis_cache.get(CACHE_UNUSED_BITMAP))
- # 判断主词是否为已使用,是则跳过,否则设置为已使用
- if local_var.unused_bitmap[main_word_position]:
- return
- else:
- local_var.redis_cache.setbit(CACHE_UNUSED_BITMAP, main_word_position, 1)
- local_var.unused_bitmap[main_word_position] = 1
- # 获取主词和对应的词根
- local_var.redis_pipeline.hget(CACHE_WORD, main_word_position)
- local_var.redis_pipeline.hget(CACHE_WORD_STEM, main_word_position)
- main_result = local_var.redis_pipeline.execute()
- main_word = main_result[0]
- main_word_stem = main_result[1]
- # 如果存在为空则返回
- if not main_word or not main_word_stem:
- return
- main_word_stem_list = main_word_stem.decode(CHARSET_UTF_8).split(",")
- # 从倒排索引获取长尾词位置
- temp_candidate_position_list = local_var.redis_cache.hmget(CACHE_WORD_REVERSE_INDEX, main_word_stem_list)
- for temp_candidate_position in temp_candidate_position_list:
- if not temp_candidate_position:
- continue
- # 排除已聚合
- for candidate_position in temp_candidate_position.decode(CHARSET_UTF_8).split(","):
- if local_var.unused_bitmap[int(candidate_position)]:
- continue
- local_var.candidate_position_set.add(candidate_position)
- # 没有找到需要计算的候选词则跳过
- if not local_var.candidate_position_set:
- return
- # 从缓存获取关键词列表、分词列表,如果为空则跳过
- local_var.redis_pipeline.hmget(CACHE_WORD, local_var.candidate_position_set)
- local_var.redis_pipeline.hmget(CACHE_WORD_STEM, local_var.candidate_position_set)
- candidate_result = local_var.redis_pipeline.execute()
- candidate_word_cache_list = candidate_result[0]
- candidate_word_stem_cache_list = candidate_result[1]
- if not candidate_word_cache_list or not candidate_word_stem_cache_list:
- return
- # 延后编码成字符,以防前面直接返回
- main_word = main_word.decode(CHARSET_UTF_8)
- # 计算相似度
- for candidate_position in range(len(local_var.candidate_position_set)):
- # 获取关键词、分词,如果存在为空则跳过
- candidate_word = candidate_word_cache_list[int(candidate_position)]
- if not candidate_word:
- continue
- candidate_word_stem = candidate_word_stem_cache_list[int(candidate_position)]
- if not candidate_word_stem:
- continue
- candidate_word = candidate_word.decode(CHARSET_UTF_8)
- candidate_word_stem_list = candidate_word_stem.decode(CHARSET_UTF_8).split(",")
- # 计算相关性
- try:
- val = utils.cal_cos_sim(main_word, main_word_stem_list, candidate_word,
- candidate_word_stem_list)
- if val >= agg_threshold:
- local_var.redis_cache.setbit(CACHE_UNUSED_BITMAP, candidate_position, 1)
- local_var.result_list.append(candidate_word)
- except Exception as e:
- logging.error("主关键词:%s 发生异常,涉及的副关键词信息-关键词:%s,分词:%s" % (
- main_word, candidate_word, candidate_word_stem_list), e)
- # 保存结果
- if not local_var.result_list:
- return
- local_var.file_writer.write("%s\n" % main_word)
- for candidate_word in local_var.result_list:
- local_var.file_writer.write("%s\n" % candidate_word)
- local_var.file_writer.write("\n")
- except Exception as e:
- logging.error("子进程发生异常", e)
- finally:
- # 清除容器数据
- local_var.candidate_position_set.clear()
- local_var.result_list.clear()
- local_var.unused_bitmap.clear()
- return
|